Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600108

RESUMO

Spectroscopic ellipsometry is a potent method that is widely adopted for the measurement of thin film thickness and refractive index. Most conventional ellipsometers utilize mechanically rotating polarizers and grating-based spectrometers for spectropolarimetric detection. Here, we demonstrated a compact metasurface array-based spectroscopic ellipsometry system that allows single-shot spectropolarimetric detection and accurate determination of thin film properties without any mechanical movement. The silicon-based metasurface array with a highly anisotropic and diverse spectral response is combined with iterative optimization to reconstruct the full Stokes polarization spectrum of the light reflected by the thin film with high fidelity. Subsequently, the film thickness and refractive index can be determined by fitting the measurement results to a proper material model with high accuracy. Our approach opens up a new pathway towards a compact and robust spectroscopic ellipsometry system for the high throughput measurement of thin film properties.

2.
Adv Sci (Weinh) ; 10(24): e2300542, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37339803

RESUMO

Cascaded metasurfaces can exhibit powerful dynamic light manipulation by mechanically tuning the far-field interactions in the layers. However, in most current designs, the metasurfaces are separated by gaps smaller than a wavelength to form a total phase profile, representing the direct accumulation of the phase profiles of each layer. Such small gap sizes may not only conflict with the far-field conditions but also pose great difficulties for practical implementations. To overcome this limitation, a design paradigm taking advantage of a ray-tracing scheme that allows the cascaded metasurfaces to operate optimally at easily achievable gap sizes is proposed. Enabled by the relative lateral translation of two cascaded metasurfaces, a continuous two-dimensional (2D) beam-steering device for 1064 nm light is designed as a proof of concept. Simulation results demonstrate tuning ranges of ±45° for biaxial deflection angles within ±3.5 mm biaxial translations, while keeping the divergence of deflected light less than 0.007°. The experimental results agree well with theoretical predictions, and a uniform optical efficiency is observed. The  generializeddesign paradigm can pave a way towards myriad tunable cascaded metasurface devices for various applications, including but not limited to light detection and ranging (LiDAR) and free space optical communication.

3.
Light Sci Appl ; 10(1): 11, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414366

RESUMO

Broadband light sources emitting in the terahertz spectral range are highly desired for applications such as noninvasive imaging and spectroscopy. Conventionally, THz pulses are generated by optical rectification in bulk nonlinear crystals with millimetre thickness, with the bandwidth limited by the phase-matching condition. Here we demonstrate broadband THz emission via surface optical rectification from a simple, commercially available 19 nm-thick indium tin oxide (ITO) thin film. We show an enhancement of the generated THz signal when the pump laser is tuned around the epsilon-near-zero (ENZ) region of ITO due to the pump laser field enhancement associated with the ENZ effect. The bandwidth of the THz signal generated from the ITO film can be over 3 THz, unrestricted by the phase-matching condition. This work offers a new possibility for broadband THz generation in a subwavelength thin film made of an ENZ material, with emerging physics not found in existing nonlinear crystals.

4.
Nano Lett ; 20(9): 6719-6724, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786940

RESUMO

Structured light projection is a widely adopted approach for depth perception in consumer electronics and other machine vision systems. Diffractive optical element (DOE) is a key component for structured light projection that redistributes a collimated laser beam to a spot array with uniform intensity. Conventional DOEs for laser spot projection are binary-phase gratings, suffering from low efficiency and low uniformity when designed for a large field of view (FOV). Here, by combining vectorial electromagnetic simulation and interior-point method for optimization, we experimentally demonstrate polarization-independent silicon-based metasurfaces that can project a collimated laser beam to a spot array in the far-field with an exceedingly large FOV over 120° × 120°. The metasurface DOE with large FOV may benefit a number of depth perception-related applications such as face-unlock and motion sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...